GCE

Physics A
Advanced Subsidiary GCE
Unit G481/01: Mechanics

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations available in Scoris

Annotation	Meaning
[TTi	Benefit of doubt given
[C0:\%	Contradiction
$*$	Incorrect Response
[F[]	Error carried forward
\square	Follow through
[106]	Not answered question
Pie	Benefit of doubt not given
His	Power of 10 error
[Omission mark
[19]	Rounding error
\square	Error in number of significant figures
\checkmark	Correct Response
\square	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions)

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{(~)}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
AW	Error carried forward
ORA	Alternative wording
	Or reverse argument

2. The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: One tick per mark. All questions must have appropriate annotation.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures and rounding errors:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.
Penalise a rounding error once only in the entire paper.

Question		Answer		Marks	Guidance
1	(a)	$\mathrm{N} \mathrm{m}{ }^{-2}$ or $\mathrm{N} / \mathrm{m}^{2}$ or Pa $\mathrm{m} \mathrm{s}^{-2}$ or $\mathrm{m} / \mathrm{s}^{2}$ or $(\mathrm{kg}) \mathrm{m} \mathrm{s}^{-2}$ 1000		B2	Allow any prefix given Allow: 2 marks if all three correct; 1 mark if one is correct or two are correct
	(b)	$\begin{aligned} & (\text { volume }=) 82-75\left(\mathrm{~cm}^{3}\right) \text { or } 7\left(\mathrm{~cm}^{3}\right) \\ & \text { density }=\frac{1.6 \times 10^{-2}}{7 \times 10^{-6}} \\ & \text { density }=2.3 \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$		C1 A1	Allow: 1 mark for $2.3 \times 10^{\mathrm{n}}, \mathrm{n} \neq 3$
			Total	4	

Question			Answer	Marks	Guidance
2	(a)		It has direction (and magnitude/size)	B1	Note: direction must be spelled correctly for the mark
	(b)	(i)	$\begin{aligned} & \begin{array}{l} \text { perpendicular component }=8.0 \times 10^{-5} \cos 30 \\ \text { perpendicular component }=6.9 \times 10^{-5}(\mathrm{~N}) \end{array} \\ & \text { parallel component }=8.0 \times 10^{-5} \mathrm{sin} 30 \\ & \text { parallel component }=4.0 \times 10^{-5}(\mathrm{~N}) \text { or } 4 \times 10^{-5}(\mathrm{~N}) \end{aligned}$	B1 B1	Allow: 1 mark if the correct numerical values of the components have been swapped Note: Penalise POT error once only; eg 6.9 and 4 respectively scores 1 mark Note: Calculator in radian mode gives 1.23×10^{-5} and (-) $7.90 \times 10^{-5}(\mathrm{~N})$; this scores 1 mark
		(ii)	$\left(F=4.0 \times 10^{-5}(\mathrm{~N})\right.$ The net force parallel to windscreen $=0$ or F is equal to the parallel component (of the weight down the windscreen) or parallel forces must be equal and opposite or $F=8.0 \times 10^{-5} \mathrm{sin} 30$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Possible ecf from (b)(i) Allow: Total force down/up the windscreen/slope is zero Not: 'net force $=0$ ' - this is an incomplete answer
			Total	5	

Question			Answer	Marks	Guidance
3	(a)		force/extension or force per (unit) extension	B1	Allow: force/compression Not: $F=k x$ and the labels are defined, because k is not the subject
	(b)	(i)	Arrow showing the force exerted by \mathbf{A} is to the left on Fig.3.1	B1	Allow an unlabelled arrow
		(ii)	$\begin{aligned} & 1 \\ & \left(F_{\mathrm{A}}=\right) 14 \times 0.30(=4.2 \mathrm{~N}) \text { or }\left(F_{\mathrm{B}}=\right) 14 \times 0.50(=7.0 \mathrm{~N}) \text { or } \\ & (\text { net force }=) 2.8(\mathrm{~N}) \\ & \mathrm{a}=2.8 / 0.80 \\ & \text { acceleration }=3.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 C1 A1	Allow: (net force =) $14 \times[0.50-0.30]=2.8(\mathrm{~N})$ Allow: acceleration of either $5.25\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ or $8.75\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Allow this C1 mark for $a=8.75-5.25$ Note: $a=\frac{7.0+4.2}{0.80}=14\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ scores 1 mark Note: $a=\frac{14 \times 0.80}{0.80}=14\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ scores zero
			$\begin{aligned} & \mathbf{2}=1 / 2 F x \text { or } E=1 / 2 k x^{2} \text { or } 1.75(\mathrm{~J}) \text { or } 0.63(\mathrm{~J}) \\ & \text { ratio }=\left(\frac{0.50}{0.30}\right)^{2}=2.8 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Using $E=F x$ scores zero because of wrong physics Note: Answer to 3 sf is 2.78 Allow fractions (Ignore any units given for the ratio)
		(iii)	The resultant force (on the trolley) is smaller (AW)	B1	
		(iv)	The acceleration decreases Correct reasoning, eg: For the same (net force) $F, \mathrm{a}=F / m$ (therefore a is smaller) For the same (net force) $F, a \propto 1 / m$ (therefore a is smaller)	M1 A1	Allow: $F=m a$. As m increases then a must decrease because F is constant
			Total	10	

Question			Answer	Marks	Guidance
4	(a)		$\begin{aligned} & \left(s=\frac{1}{2} a t^{2}\right) ; 0.700=1 / 2 \times 9.81 \times t^{2} \\ & t^{2}=\frac{2 \times 0.700}{9.81}(=0.1427) \\ & t=0.378(\mathrm{~s}) \text { or } 0.38(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $a=9.8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Note: Using $a=10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ gives 0.374 (s) or 0.37 (s); this scores 2 marks Allow full credit for correct use of $v^{2}=2$ as and $v=a t$
	(b)	(i)	acceleration or deceleration displacement or distance	B1	
		(ii)	A tangent drawn on Fig. 4.2 at point \mathbf{A} Determine the gradient of the tangent Deceleration value in the range 13.0 to $17.0\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	B1 M1 A1	Note: This is an independent mark Note: Ignore sign Special case: Allow 1 mark for using a chord about $t=0.05$ seconds to determine the deceleration and the value lies in the range 13.0 to $17.0\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
		(iii)	At A: Drag > weight The ball is decelerating/'slowing down’ At B: Drag = weight The ball has zero acceleration/has reached terminal velocity/has reached constant velocity	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: 'friction'/'resistive force' for drag Allow: upward/negative acceleration Note: Allow full credit if upthrust and drag are both mentioned and applied correctly at points A and/or B
		(iv)	The (gravitational) potential energy/(G)PE (of the ball) is converted into heat/thermal (energy)	B1	
			Total	12	

Question			Answer	Marks	Guidance
5	(a)		A point where the (entire) weight of the object (appears to) act	B1	Not: 'where the weight of an object acts'
	(b)		moment of force $=$ force \times perpendicular distance (of line of force) from point/axis/pivot/fulcrum	B1	
	(c)	(i)	```net force = 0 net moment =0 or net torque = 0```	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: (For this rod) upward force $=$ (sum of the) forces down Allow: (For this rod sum of) clockwise moment(s) = (sum of) anticlockwise moment(s)
		(ii)	Evidence of $0.12 x$ or $0.35(0.50-x)$ $\begin{aligned} & 0.12 x=0.35(0.50-x) \\ & x=\frac{0.35 \times 0.50}{0.12+0.35} \\ & x=0.37(\mathrm{~m}) \end{aligned}$	C1 C1 A1	
		(iii)	force $=0.47(\mathrm{~N})$	B1	
			Total	8	

Question			Answer	Marks	Guidance
6	(a)		(1 watt is equal to) 1 joule (of energy transferred) per second	B1	Allow: (1) $\mathrm{J} \mathrm{s}^{-1}$ Not: ' 1 J (of energy transferred) in 1 s ' because the per or rate idea is not clear Note: Do not allow mixture of quantity and unit. Eg: '1 J per unit time' or 'energy per second'
	(b)	(i)	$\begin{aligned} & E_{\mathrm{p}}=700 \times 9.81 \times 8.5 \\ & E_{\mathrm{p}}=5.8(4) \times 10^{4}(\mathrm{~J}) \end{aligned}$	B1	
		(ii)	$\begin{aligned} & \text { output power }=\frac{5.84 \times 10^{4}}{45} \\ & \text { output power }=1.3 \times 10^{3}(\mathrm{~W}) \end{aligned}$	B1	Possible ecf from (i)
		(iii)	$\begin{aligned} & \text { input power }=1.3 \times 10^{3} / 0.3 \\ & \text { input power }=4.3 \times 10^{3}(\mathrm{~W}) \end{aligned}$	B1	Possible ecf from (ii)
			Total	4	

Question		Answer	Marks	Guidance	
7	(a)	(i)	(work done =) $F x$ and $F=m a \quad$ (Allow any subject)	B1	Allow: d or s instead of x

Question			Answer	Marks	Guidance
8	(a)	(i)	$\begin{aligned} & \text { Young modulus }=\text { gradient (in the linear region) } \\ & E=1.5 \times 10^{9} / 0.008 \\ & E=1.9 \times 10^{11}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: ($E=$) stress/strain for this C1 mark Note: Deduct 1 mark for incorrect value or omission of the prefix G. Also deduct another mark for incorrect conversion of 0.80% strain.
		(ii)	1 Obeys Hooke's law/elastic (behaviour) (AW)	B1	Allow: stress \propto strain
		(ii)	2 Plastic (deformation) (AW)	B1	
		(iii)	No change (to the linear section)/gradient is the same because the Young modulus is the same (and independent of length)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)		Polymer or polymeric or rubber Any one from: - The material is elastic/there is no strain when the stress is removed/material returns to its original size or shape when forces are removed (AW) - The work done on the material > energy returned back by the material or area under loading graph > area under unloading graph (AW) The aeroplane/tyres do not bounce (too much on landing)	B1 B1 B1	polymer/polymeric/rubber must be spelled correctly to gain the first B1 mark Not: 'Monomer' Allow: material/graph shows 'hysteresis' Allow: Material 'absorbs' energy/material gets hot (AW)
			Total	10	

Appendix - Additional Guidance

Question	Additional Guidance
1b	Allow: 1 mark for $2.3 \mathrm{~g} / \mathrm{cm}^{3}$ Note: The volume mark is for seeing ' 7 ' - ignore any POT (Do not allow 7^{3})
2a	If only $\mathrm{F}=\mathrm{ma}$ is used they need to state acceleration has direction and mass is a scalar/has no direction
2bii	Allow: $F=W \sin 30$ or $F=m g \sin 30$ for the last option No credit for 'forces are balanced' or 'forces are in equilibrium'
3bi	Ignore any arrows on Fig 3.2 If the arrow to the left on Fig 3.1 starts from the support/is to the left of the support this scores 0.
3bii1	Allow (net force =) $14 \times 0.2=2.8(\mathrm{~N})$ for the first C1 mark
3biii	Note ' force on B decreases and force on A increases' is not sufficient to gain a mark Allow: net/total/sum of/overall/ Σ
4a	The first C1 mark is for substitution, the second C1 mark is for rearrangement Alternative: $\begin{aligned} & v^{2}=2 \mathrm{as} \\ & v^{2}=2 \times 9.81 \times 0.70 \text { or } v=3.7\left(06 \mathrm{~m} \mathrm{~s}^{-1}\right) \mathrm{C} 1 \\ & t=3.706 / 9.81 \\ & \text { time }=0.378(\mathrm{~s}) \text { or } 0.38(\mathrm{~s}) \quad \mathrm{C} 1 \end{aligned}$
4bii	A mark is lost for a graph mis-read, so please check the co-ordinates (± 1 small square). This may lead to an ECF falling outside the range but do not penalise twice. A mark will also be lost for any AE in the calculation.
4biii	Note: Do not allow 'gravity' for weight. 'Force of gravity' is OK In 4biii2, allow constant speed for constant velocity
4biv	Do not allow: potential energy to kinetic energy to heat Allow: potential energy to kinetic energy of oil
5a	Do not allow: place, position, where, location
5ci	Do not allow: $\Sigma \mathrm{F}=0$ and $\Sigma \mathrm{M}=0$ Allow: Σ Forces $=0$ and Σ Moments $=0$
6 a	Allow: base units, $\mathrm{kgm}^{2} \mathrm{~s}^{-3}$ or other alternatives.
7aii	Allow: W for KE in the final stage of the derivation
7b	For the second answer route and the third B1 mark: Allow: correct reasoning for longer distance in terms of equations of motion: $\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}$ to explain more t and $s=1 / 2(u+v)$ to explain more s. Allow: explanation in terms of momentum including the equation. IF THE CANDIDATE ANSWERS VIA BOTH ROUTES THEN AWARD THE HIGHER MARK.
8aii1	Allow: force \propto extension, elastic in words i.e. returns to original length when unloaded.
8aii2	Allow: inelastic, plastic in words i.e. does not return to original length when unloaded Allow: permanently deformed
8aiii	For the A1 mark allow the 'ratio of stress to strain is the same'
8b	Allow: Elastomer for the first B1 mark if spelled correctly. Watch for CONs, e.g 'the material is elastic and ductile' cannot score the second B1 mark. QWC - Allow the mark if one spelling word is incorrectly spelled and another is correctly spelled.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

